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1. Introduction and results

A stochastic process is said to be H-self-similar (H-ss) for H>O if for

any c>O, all finite-dimensional distributions of {X(ct)} are the same as those

of {cHX(t)}, and to have stationary increments (si) if any finite-dimensional

distribution of {X(t+b)-X(t)} does not depend on b. It is also said to be

a-stable if any finite-dimensional distribution of {X(t)} is a-stable.

In this paper, we examine the Hidlder continuity of H-ss si a-stable

processes.

There are two main classes of H-self-similar a-stable processes with

stationary increments: the linear fractional stable processes and the

harmonizable fractional stable processes. In [T], Takashima showed the Wdlder

continuity of the linear fractional stable processes, and also pointed out that

the exponent in the Wcdlder continuity cannot be bigger than H-1/a. However, we

can get a better Irdlder continuity for the harmonizable fractional stable

processes as follows. The harmonizable fractional stable process is a

complex-valued process defined by

X) e itX _ -1 xl-H-l/adk x)xct) = s e l a( )

where O<H<I and H is a complex rotationally invariant a-stable motion, (see
a

[CM]). This is an H-ss si rotationally invariant a-stable process.

Theorem 1. For the harmonizable fractional stable process, there exists a

Accesion For
version X such that e F

NTIS CRA&I
DIIC TAB

lim SUP IX (t)-X e(s)I 0. U:,d roi,,c~o610 Itsl<6 ItslHllogltsil1a+1/2+6 Jus,,,.cilor,

for any e > O. By

L,.,t -bjtio n I

S" Avdiiablity Codes

D- Avji ;d oiAlo
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In [KM], we gave a partial result on the Wdlder continuity of the

harmonizable fractional stable process, where H is replced by any 7 < H.

As mentioned above. Takashima [T] showed that the sample paths of the

linear fractional stable process have the Frdlder continuity of It-si H -I 'a with

Gie help of some slowly varying function, if 1<a<2 and 1/a < H < 1. In the

following theorem, we can see that this is also true for general H-ss si

a-stable processes with 1<a<2 and 1/a<H<l.

Theorem 2. Let X = {X(t)}t 0 be H-ss si a-stable with 1<a<2 and 1/a(H<l. Then

there exists a version X* on [0,1] such that

lim sup iXe(t)-X(s) I= 061 t-s[€o'l] It-s IH- 1/ a  llogltslll / a+l +  -

It-sl<6

for any e > 0.

a-stable processes have r-th moments for any -Y < a. Then, by the property

of H-ss si, we have

E[ lx(t)-X(t) 17] = E[ jt-s [H Ix(1) l7]

= clt-sl H' .

If l<a<2 and 1/a<H<l, then we can find l<i<a such that H>I. This means that

H-ss si a-stable processes with l<a<2 and l/a<H<l satisfy Kolmogorov's moment

condition

(1.1) E[IX(t)-X(s)17 ]  Kjt-sj H  .

where i > 1, K > 0, H7 > 1. It is well-known that under condition (1.1), there

exists a version whose sample paths are continuous. A natural question is

whether we can get the Holder continuity just under the moment condition (1.1)

without self-similarity and stability. This is the case. as seen in the
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following theorem. This fact may be known but we cannot find appropriate

references. We shall give its proof in this paper.

Theorem 3. Suppose X = {X(t)}tE[Ol ] satisfies

(1.2) E[IX(t) - X(s)I" ]  Kit-sl,

where - _ 1. K > 0. 3 > 1. Then there exists a version such that

ur x' (t)-X'~(s)i{ =o
lim sup (/e-1 e ) le 0.6io It-slC[o.1] It-sl I1)'7loglt-sjle

It-sk<6

It is noted that Theorem 3 is not enough to get Theorem 2. If we apply

Theorem 3 to H-ss si a-stable processes, we can only obtain

lim S l iX'*(t) - Xw(s) =0

0it-sX

for any X < H-1/a.

The proofs of Theorem 1, 2 and 3 are given in the subsequent sections.

2. Proof of Theorem 1

The basic idea to prove Theorem 1 is to use the LePage representation of

complex-valued rotationally invariant stable processes. The LePage

representation allows us to regard stable processes as conditionally Gaussian

processes and we next use the known results for Gaussian processes.

We state results for the LePage representation and Gaussian processes as

lemmas.

Let * be an arbitrary probability measure equivalent to Lebesgue measure

on R and let 'p be its Radon-Nikodym derivative, 4(dX) = p(dX)dX. Let {fi}jl

be a sequence of iid random variables with distribution %P, and let {g ijYl be a
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sequence of iid rotationally invariant complex-valued random variables with

E[gl] = 0 and E[IReg1a ] = 1. Let {r iIJ 1 be a sequence of Poisson arrival

times with unit rate. Suppose that {d}. {g.}. { } are mutually independent.

Lemma 1. Suppose X = {X(t)} 0 is represented as

X(t) = f f(tX)dM aX).

Then {X(t)}t>0 has the same finite-dimensional distributions as {Y(t)}tC

defined by

(2.1) Y(t) = C 2 g r I/a P(f -l/af(t.E)
i=1 " J

where the last series converges almost surefly for each t.

This result was shown in [MP]. However, there is a small gap in their

proof, which is filled in [KM].

The next lemma due to [Kl] was shown for real-valued processes, but it is

easily seen to be valid also for the complex-valued case. More precisely, the

lemma can be given from Theorem 1. Corollary 1 and the comment at the end of

the proof of Theorem 1 of [K1].

Lemma 2. Let {Y(t)}te[O.1] be a centered Gaussian process satisfying

E[ Ict)-Y~s)12] ao2(It-sl)/

where a(x) is a non-decreasing function defined on (0,) and a(x)llog xlI1 2 is

also non-decreasing near the origin. Then

lim sup IY(t)-Y(s)I a.s.
610 It-sl<6 a(It-sl) Ilog Itslll / 2

Proof of Theorem 1. Recall that
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X(t) = f, f(t.X)dMa(X),

where

itX
f(t) e -1 IIl-H-1/a

Take

a

IxlII loglIxl 1 'T

where 77 > 0 and a is the normalization for fJp(X)d = 1. and fix {i} and {F.}

in (2.1) to regard Y as a conditionally Gaussian process.

We denote the expectations with respect to {gj} and by Eg and El

respectively. In what follows, C denotes a positive constant which may differ

from one inequality to another. We then have

(2.2) E [IY(t) - Y(s)1 2] = CEg[Igl1
2 ] I r-2/a (E )-2/alf(t,f )-f(s'f ) 12

= Ca2(t-s)

where

a2(z) -r -2/a (f -2/a sup [f(tE )-f(s.f )12

J=l It-sI~z

C I F-2 /a (f1)-2/a(1zEj1
2 A 111fjI - 2 (H + l/ a )

j=l

Then we can prove

' a22 -n)
(2.3) ! a22-n) < co a.s. (f).

n=1 b (2- )

where

b(t) = tH jlogjtjj(l+Ti)/a

We are going to show (2.3). We have
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0

J=1 j {I1(X + I

where

I1 Cz21z(~o xll+)- (1-2/a) j-2(H+1/a)+2dx

=Cz~ 2HoIg 1-(l+'r)(l-2/a)

and

I2 CfG* (x I og x11+17) (1-2 /a) X2(H+l/az)dx

=z C 2H hog zl(lI~)(1-2a)

Theref ore

j=1

and thus

E 2 -n) (C I0

J=l b(2 ) j=l ~ n=1

which is (2.3). From this,

lrn =~z 0 a.s. (fF)
Z10 b(z)

which implies for small z > 0,

a(z) Cz H~log jzl(l+p)/a a.s. (.'

This combined with (2.2) gives us

2g+7/
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If we regard this right-hand side as a2 {(t-sl) in Lemma 2. it satisfies the

conditions in Lemma 2. Therefore by Lemma 2, almost surely with respect to

im sup IY(t)-Y(s)- 0510 {tsl<5 ltsHllgltsll
/a + 1/ 2 + e

for any e > 0. The proof is thus completed. D

3. Proof of Theorem 2

We need a real-valued lemma.

Lemma 3. Let (f(t))tE[o.1] be a real-valued continuous function. Then we have

Itsup -n f(t)-f(s)I 3 . max rf((k+l)2
-r) - f(k2-r)It-sl<2 -  r=n lgk 2r

Proof. Write the binary expansion of t C [0.1] as

Y, a (t)2- . aj(t) 0 or 1.
j--o

and put

r j
t r= 2 a .(t)2

j-_0

Then for t,s satisfying It-s 2 -

f(t)-f(s)I . f(tr+l)f(tr)I + f(tn)-f(sn)I+ 2 If(Sr+l)-f(Sr)l
r=n r=n

3 max r f((k+l)2 - r ) - f(k2-r)l.
r=n lk 2

This concludes the lemma. 0

Proof of Theorem 2. As mentioned in Section 1, H-ss si a-stable processes with



1< a < 2 and I<( H < 1 satisfy moment condition (1.1). Hence there exists a
a

version X*with continuous sample paths. We write it X for simplicity of the

notation. We restrict X(t) on {tlt C [0,1]1. Put

AX M maxn IX((k+1)2-n) _ X(k2-n)I.

By Lemma. 3, we see

(3.1) itsup -n IX(t)-X(s)I 3 2 ()
IsI(2 r=n

Let O(x) be a nonnegative, nondecreasing convex function defined on [0,CD)

satisfying 0(0) = 0 and

a
O()- x 1+77 as x -

(log X)

for some Tj with 0 < rn < ea. Denote the inverse function of O(x) by 0- (x.

0- (x) is a nonnegative, nondecreasing concave function on [0.-) and satisfies

0- (x) - ix /(log x)117/ as x- .

Since X is a-stable, we know

and therefore

(3.3 E[OIX(11)]1

For simplicity, we put 13 :=H - i (>0) below.

We now have

I tsup _n IX(t)-X(s)I 0 1CO r A (X)
E[ ItsI2 3 2 1 2 "HE[ r-H (by (3.1))

-no n=1 2'_n 1/a+l+& r-n=l r ~ ~
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ODCO A (X)
32 -xiki l/a+l+e- 7 2- E[-Plo0-( rn=1 2 n r=n 2

3 2 1/le.. ~ 2 rH,l1 (E[,p( Ar (X)
n=-1 2-nl/le r=n 2-r

(by Jensen's inequality), where we have

A r(X) 2 IX((k+)2 r)_X(k2-r)IL

2- k=1 2-H

I E[,P(IX(l)I)] (by H-ss si)
k=1

C2 r (by (3.3)).

Hence we have

ltsup2 IX(t)-X(s)I 0 O rO1Cr

E[ 1 7, -o n/a+l+e ) n13 1/a+1+e -7 2 E (
nl 2n=1 2 n r=n

0 C 1 2 2 -rH 2r/
2 (log 2 r)(l+r>'/a (by (3.2))

n=1 2-nJ3 nl/a+l+e r=n

03

0 1 12 nH1an 17)/<0,

imp lying

ODi-sup -n IX(t)-X(s)I
It- (/~~p a. s.

n=l 2' n /++

Therefore, there exists an N such that for any n N.

(3.4) itsup -nIX(t)-X(s)I < 2'nP 1/a+l+e a.s
Its I 2

For any t.s satisfying It-si < 2-N. take ni > N such that 2~ -n It-si <( nl

Then we have by (3.4)
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IX(t)-X(s)I < It-sIO I oglt-s I 1/~~- a.s

and hence

it~sj2_NIt-s I0 loglt-sI 11/a+l+e

Since & > 0 can be arbitrarily taken. we conclude Theorem 2.0

4. Proof of Theorem 3

We again start with the preliminary ienms.

Lemma 4. Let {f(t)} tE[Oij be a real-valued continuous function and let

A (f) = Oma Os -n If(k2-n +h) _-~2-~

Let %p(t) be a continuous function on [0,l) such that wp(O) =0 and %p(t) is

monotone increasing in the neighborhood of the origin. If

A (f)
(4.1) --

n=l Wp(2 )

then

lim SUP lf -m = 0.

Proof. For any t.s E [0,1]. choose n E [N such that

-n-1 -n
2 It-sI<

and re-)resent t and s by

t =kt2-n + h t ad s=k 2 n + h

respectively, where k , k s Z, 0 ht. h ( 2 -n. Noting 1k-Ck I 1 0 or 1, we

have

(4.2) If(t)-f(s)I l f(t)-f(k t2-n )I + If(k t2 -n)-f(k s2-n )I + If(k s2 -n)-f(sfl
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3An(f).

For 6>0, choose N C IN such that

(4.3) 2 N-
1  6 < 2

Then we have

(4.4) sup sf(tu-f(s)p N f(t)-f(s)-SI6 (It sl) It-sl<2- N (It-sl)

For t,s satisfying It-sl < 2-N . there exists an n N such that

2 n-ij It-sl < 2 n . Thus it follows from (4.2) that for any ts satisfying

It-sl < 2-N.

If(t)-f(s)j I 3An(f)

.(It-sl) A (f)

,p(2-
n-l)

A n(f)
3,(It-s1) 7 -n-

n=N v(2 )
implying

(4.5) sup Nf(t)-f(s)iIt-sl< 2 -N o(t-s]) D~)

where

c A (f)
flIf nDM -n-i

n=N qp(2 
-n- )

Note that 610 is equivalent to N-- 00 by (4.3). We thus conclude from (4.1).

(4.4) and (4.5) that

lim sup lf(t-f(x){ lim 3DN(f) = 0. 0
Lem mt-s5<6 .( I t-sl N-

Lemma 5. If (1.2) is satisfied. then
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E[ sup IX(t)-x(O)j ]) ( 2 -n-l)/-)-.
0 t l n=1

This is considered to be known, but we cannot find it in the literature.

However, the proof can be found in the lecture note by one of the authors [K2]

at National Taiwan University, which will be published.

Lemma 6. If (1.2) is satisfied, then for O<a<b~l,

E[ sup IX(t)-X(s)" T ] _ C(b-a)

Proof. If we put Y(t) := X(a+t(b-a)), then for Ostl,

E[IY(t)-Y(s)I'] = E[IX(a+t(b-a)) - X(a+s(b-a))Il]

SK(b-a)P [t-s 1P.

under moment condition (1.2). Thus, by Lemma 5.

E[ sup IX(t)-X(a)1T ] = E[ sup IY(t)-Y(0)1T ] = C(b-a)
a~t~b Ot~l

concluding the lemma. 0

Proof of Theorem 3. Once again, we take a version X with continuous sample

paths from the beginning.

As in Lemma 4. we put

An{X} nmax n -supn IX(k2-n +h) X(k2-n)I
0 k 2 O<h<2

We have

An(X)
E[ I n-I

n=1 %(2-  )

Sn- E[A (X)]

n=l *(2 - )
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=1 1 (E[An(X)"]) (since "vl)n=1 (2 - n - 1l )

1n- (I E[ sup nIX(k2-n+h)-X(k2-)1-,])I/,
n=1 V(2-  ) n=l O~h 2

12 (- I ) 1/C2 (by Lemma 6)
n=1 V(2-  ) n=l

- 0Y 1 (2 -nLf-l))I/ r
C I -n-i (
n=l f(2 -  )

If we take here

V(x) = IxI(P- 1)/, log lxi e 1o
then we have

0An(X)E[ ] < -,n-
n=l f(2 )

yielding

An(X)
2 n < a.s.

n=l V(2 n - )

The conclusion follows from Lemma 4. 0
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